Ca2+-induced conformational transition in the inhibitory and regulatory regions of cardiac troponin I.

نویسندگان

  • Wen-Ji Dong
  • John M Robinson
  • Scott Stagg
  • Jun Xing
  • Herbert C Cheung
چکیده

Cardiac muscle activation is initiated by the binding of Ca(2+) to the single N-domain regulatory site of cardiac muscle troponin C (cTnC). Ca(2+) binding causes structural changes between cTnC and two critical regions of cardiac muscle troponin I (cTnI): the regulatory region (cTnI-R, residues 150-165) and the inhibitory region (cTnI-I, residues130-149). These changes are associated with a decreased cTnI affinity for actin and a heightened affinity for cTnC. Using Förster resonance energy transfer, we have measured three intra-cTnI distances in the deactivated (Mg(2+)-saturated) and Ca(2+)-activated (Ca(2+)-saturated) states in reconstituted binary (cTnC-cTnI) and ternary (cTnC-cTnI-cTnT) troponin complexes. Distance A (spanning cTnI-R) was unaltered by Ca(2+). Distances B (spanning both cTnI-R and cTnI-I) and C (from a residue flanking cTnI-I to a residue in the center of cTnI-R) exhibited Ca(2+)-induced increases of >8 A. These results compliment our previous determination of the distance between residues flanking cTnI-I alone. Together, the data suggest that Ca(2+) activation causes residues within cTnI-I to switch from a beta-turn/coil to an extended quasi-alpha-helical conformation as the actin-contacts are broken, whereas cTnI-R remains alpha-helical in both Mg(2+)- and Ca(2+)-saturated states. We have used the data to construct a structural model of the cTnI inhibitory and regulatory regions in the Mg(2+)- and Ca(2+)-saturated states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+-Induced PRE-NMR Changes in the Troponin Complex Reveal the Possessive Nature of the Cardiac Isoform for Its Regulatory Switch

The interaction between myosin and actin in cardiac muscle, modulated by the calcium (Ca2+) sensor Troponin complex (Tn), is a complex process which is yet to be fully resolved at the molecular level. Our understanding of how the binding of Ca2+ triggers conformational changes within Tn that are subsequently propagated through the contractile apparatus to initiate muscle activation is hampered ...

متن کامل

Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase.

Cardiac phospholipid-sensitive Ca2+-dependent protein kinase phosphorylated cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T), present either as the free form or as the troponin-tropomyosin complex. Exhaustive phosphorylation of troponin I and of troponin T revealed that 1.7 and 2 mol of phosphate was incorporated/mol of the subunits respectively. Cyc...

متن کامل

Calcium-induced structural transition in the regulatory domain of human cardiac troponin C.

While calcium binding to troponin C (TnC) triggers the contraction of both skeletal and cardiac muscle, there is clear evidence that different mechanisms may be involved. For example, activation of heart myofilaments occurs with binding to a single regulatory site on TnC, whereas activation of fast skeletal myofilaments occurs with binding to two regulatory sites. The physiological difference b...

متن کامل

The calcium-saturated cTnI/cTnC complex: structure of the inhibitory region of cTnI.

The contiguous inhibitory and regulatory regions of troponin I in the heterotrimeric troponin complex play a critical role in Ca(2+) activation of striated muscle. Knowledge of the structure of this critical region within the complex will enhance efforts toward understanding regulatory mechanisms. Toward this goal, we have used simulated annealing to study the structure of the inhibitory and re...

متن کامل

Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain.

The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 10  شماره 

صفحات  -

تاریخ انتشار 2003